Information about the municipality city Bad Sulza:

View the information on over 100 topics about the municipality city Bad Sulza! With charts, links to more information & an overview of all figures in 1 table.
View the information on over 100 topics about the municipality city Bad Sulza! With charts, links to more information & an overview of all figures in 1 table.
Population numbers per year
The number of inhabitants in the municipality city Bad Sulza

One moment please, your device is loading the charts...

Population numbers in the municipality city Bad Sulza for the years 2009 thru 2019.

The number of inhabitants is the number of persons as registered in the population register on January 1st.

Population at the map of Bad Sulza
Map of Rural district Weimarer Land with the population per municipality.Municipality Bad Sulza is highlighted with a red edge.. This page shows a lot of information about residents (such as the distribution by age groups, family composition, gender, native or German with an immigration background, ...), homes (numbers, types, price development, use, type of property, ...) and more (car ownership, energy consumption, ...) based on open data from the German Federal Agency for Cartography, the Federal Statistical Office (DESTATIS), the Regional Statistical Offices and various other sources!

Map of Rural district Weimarer Land with the population per municipality.Municipality Bad Sulza is highlighted with a red edge. The numbers at the map represent the following municipalities: 1: municipality Großheringen, 2: municipality Krautheim, 3: municipality city Neumark, 4: municipality city Bad Sulza, 5: municipality Rannstedt ...Show more... Map of Rural district Weimarer Land with the population per municipality.Municipality Bad Sulza is highlighted with a red edge. The numbers at the map represent the following municipalities: 1: municipality Großheringen, 2: municipality Krautheim, 3: municipality city Neumark, 4: municipality city Bad Sulza, 5: municipality Rannstedt, 6: municipality Vippachedelhausen, 7: municipality Ködderitzsch, 8: municipality Eberstedt, 9: municipality city Buttelstedt, 10: municipality Schwerstedt, 11: municipality Rohrbach, 12: municipality Schmiedehausen, 13: municipality Niedertrebra, 14: municipality Leutenthal, 15: municipality Obertrebra, 16: municipality Ballstedt, 17: municipality Ilmtal-Weinstraße, 18: municipality Ramsla, 19: municipality Berlstedt, 20: municipality Heichelheim, 21: municipality Sachsenhausen, 22: municipality Großobringen, 23: municipality Ettersburg, 24: municipality Kleinobringen, 25: municipality Wohlsborn, 26: municipality city Apolda, 27: municipality Ottstedt a. Berge, 28: municipality Saaleplatte, 29: municipality Kromsdorf, 30: municipality Niederzimmern, 31: municipality Daasdorf a. Berge, 32: municipality Hopfgarten, 33: municipality Wiegendorf, 34: municipality Kapellendorf, 35: municipality Umpferstedt, 36: municipality Nohra, 37: municipality Frankendorf, 38: municipality Hammerstedt, 39: municipality Isseroda, 40: municipality Bechstedtstraß, 41: municipality Mönchenholzhausen, 42: municipality Großschwabhausen, 43: municipality Lehnstedt, 44: municipality Mellingen, 45: municipality Vollersroda, 46: municipality Kleinschwabhausen, 47: municipality Troistedt, 48: municipality Oettern, 49: municipality Döbritschen, 50: municipality Hetschburg, 51: municipality Klettbach, 52: municipality Mechelroda, 53: municipality Buchfart, 54: municipality Kiliansroda, 55: municipality city Magdala, 56: municipality Nauendorf, 57: municipality Tonndorf, 58: municipality city Bad Berka, 59: municipality Hohenfelden, 60: municipality city Blankenhain, 61: municipality city Kranichfeld, 62: municipality Rittersdorf ...Show less...

Population per age group
The percentage of inhabitants per age group in the municipality city Bad Sulza

One moment please, your device is loading the charts...

Municipality city Bad Sulza, 2019, age groups.

Population, age groups: percentage of inhabitants per age category.

The number of rooms per house (dwelling)
The number of rooms of the houses in the municipality city Bad Sulza

One moment please, your device is loading the charts...

Municipality city Bad Sulza, 2019, number of rooms per house.

The percentage shows the relative share of houses per category based on the numer of rooms: 1 to 2 rooms, 3 to 4 rooms or 5 rooms or more. This is based on the total number of rooms as identified for all dwellings in the municipality city Bad Sulza.

Data about more than 100 topics!

The table below shows data for more than 100 topics as most recently available for the municipality city Bad Sulza. Select a category to display the related topics:

BusinessValueUnitYear
Businesses3Number2017
Active persons107Number2017
Gross wages€2.537Euro2017
DwellingsValueUnitYear
Houses 1 room35Number2019
Houses 2 rooms211Number2019
Houses 3 rooms441Number2019
Houses 4 rooms649Number2019
Houses 5 rooms528Number2019
Houses 6 rooms336Number2019
Houses 7+ rooms 375Number2019
Houses 1-2 rooms246Number2019
Houses 3-4 rooms1.090Number2019
Houses 5+ rooms1.239Number2019
1-2 rooms10%Percentage2019
3-4 rooms42%Percentage2019
5+ rooms48%Percentage2019
ElectionsValueUnitYear
Voters Bundestag3985,00Number2017
Voter turnout Bundestag63Number2017
Votes valid Bundestag2.476Number2017
Votes Bundestag CDU/CSU838Number2017
Votes Bundestag SPD323Number2017
Votes Bundestag GRÜNE56Number2017
Votes Bundestag FDP179Number2017
Votes Bundestag DIE LINKE313Number2017
Votes Bundestag AfD582Number2017
Votes Bundestag other parties185Number2017
Votes Bundestag total2.476Number2017
% Votes Bundestag CDU/CSU21%Percentage2017
% Votes Bundestag SPD8%Percentage2017
% Votes Bundestag GRÜNE1%Percentage2017
% Votes Bundestag FDP4%Percentage2017
% Votes Bundestag DIE LINKE8%Percentage2017
% Votes Bundestag AfD15%Percentage2017
% Votes Bundestag other parties5%Percentage2017
EmploymentValueUnitYear
Employees1.991Number2019
Employees male1.024Number2019
Employees female967Number2019
Employees foreigner32Number2019
Employees male foreigner17Number2019
Employees female foreigner15Number2019
Unemployed96Number2018
Unemployed foreigners4Number2018
Unemployed severely disabled11Number2018
Unemployed 15-202Number2018
Unemployed 15-257Number2018
Unemployed 55-6528Number2018
Unemployed long-term28Number2018
% Unemployed2%Percentage2018
% Unemployed foreigners0%Percentage of the population2018
% Unemployed severely disabled0%Percentage of the population2018
% Unemployed 15-200%Percentage of the population2018
% Unemployed 15-250%Percentage of the population2018
% Unemployed 55-651%Percentage of the population2018
% Unemployed long-term1%Percentage of the population2018
IncomeValueUnitYear
Income receivers2.171Number2015
Income total€65.568Euro2015
Income tax€8.931Euro2015
PopulationValueUnitYear
Population4.660Number2019
Men2.247Number2019
Women2.413Number2019
% Men48%Percentage2019
% Women52%Percentage2019
0-18689Number2019
18-30403Number2019
30-45754Number2019
45-601.162Number2019
18-602.319Number2019
60-751.030Number2019
60+1.652Number2019
Average age48Average number2019
Average age male47Average number2019
Average age female50Average number2019
Births30Number2018
Births male14Number2018
Births female16Number2018
1K Births6Number per 1000 inhabitants2018
Deaths70Number2018
Deaths male36Number2018
Deaths female34Number2018
1K Deaths15Number2018
0-398Number2019
Girls 0-359Number2019
Boys 0-339Number2019
3-6118Number2019
Girls 3-658Number2019
Boys 3-660Number2019
6-10149Number2019
10-15198Number2019
15-18126Number2019
18-2064Number2019
20-25171Number2019
25-30168Number2019
30-35240Number2019
35-40265Number2019
40-45249Number2019
45-50338Number2019
50-55386Number2019
55-60438Number2019
60-65384Number2019
65-75646Number2019
Women 65-70338Number2019
Men 65-70308Number2019
75+622Number2019
Women 75+388Number2019
Men 75+234Number2019
% 0-108%Percentage2019
% 10-187%Percentage2019
% 18-309%Percentage2019
% 30-4516%Percentage2019
% 45-6025%Percentage2019
% 60+35%Percentage2019
Real estateValueUnitYear
Property tax A revenueno dataEurono data
Property tax B revenueno dataEurono data
Trade tax actual revenueno dataEurono data
Property tax A basic amountno dataEurono data
Property tax B basic amountno dataEurono data
Trade tax basic amountno dataEurono data
Property tax A rateno dataEurono data
Property tax B rateno dataEurono data
Trade tax rateno dataEurono data
Real tax raising forceno dataEurono data
Trade tax levyno dataEurono data
Trade tax netno dataEurono data
Community share in income taxno dataEurono data
Community share in sales taxno dataEurono data
Tax revenueno dataEurono data
RegionalValueUnitYear
Region code160715051004Code2019
Region code 8 digits16071004Code16071004
Sorting code160715051004Code160715051004
Sorting code 8 digits16071004Code16071004
Region nameBad SulzaName2019
Regional level6Categorical type2019
Region typeMunicipalityCategorical type2019
Region type detailmunicipality cityCategorical type2019
Region name with typemunicipality city Bad SulzaName2019
Region name in GermanGemeinde Stadt Bad SulzaName2019
Direct subregionsno dataNumber2019
NUTS codeDEG0GCode2019
Area45Area in km²2019
ReligionValueUnitYear
Roman Catholic church99Number2011
Protestant church700Number2011
Other or none2.079Number2011
% Roman Catholic church3%Percentage2011
% Protestant church24%Percentage2011
% Other or none72%Percentage2011
Roman Catholic church German99Number2011
Protestant church German697Number2011
Other or none German2.055Number2011
% Roman Catholic church German3%Percentage2011
% Protestant church German24%Percentage2011
% Other or none German Foreign72%Percentage2011
Roman Catholic church Foreign0Number2011
Protestant church Foreign3Number2011
Other or none Foreign24Number2011
% Roman Catholic church Foreign0%Percentage2011
% Protestant church Foreign11%Percentage2011
% Other or none Foreign89%Percentage2011
Open data sources used

Data is used from multiple German open data providers. See this description of the sources with the definitions of all regional topics.

Sources & definitions
Under development
Work is in progress to add more information to this page

This page will be further expanded with more topics in clear graphs. This will be done in several iterations in the coming weeks.