Information about the municipality Frankenheim/Rhön:

View the information on over 100 topics about the municipality Frankenheim/Rhön! With charts, links to more information & an overview of all figures in 1 table.
View the information on over 100 topics about the municipality Frankenheim/Rhön! With charts, links to more information & an overview of all figures in 1 table.
Population numbers per year
The number of inhabitants in the municipality Frankenheim/Rhön

One moment please, your device is loading the charts...

Population numbers in the municipality Frankenheim/Rhön for the years 2009 thru 2019.

The number of inhabitants is the number of persons as registered in the population register on January 1st.

Population at the map of Frankenheim/Rhön
Map of Rural district Schmalkalden-Meiningen with the population per municipality.Municipality Frankenheim/Rhön is highlighted with a red edge.. This page shows a lot of information about residents (such as the distribution by age groups, family composition, gender, native or German with an immigration background, ...), homes (numbers, types, price development, use, type of property, ...) and more (car ownership, energy consumption, ...) based on open data from the German Federal Agency for Cartography, the Federal Statistical Office (DESTATIS), the Regional Statistical Offices and various other sources!

Map of Rural district Schmalkalden-Meiningen with the population per municipality.Municipality Frankenheim/Rhön is highlighted with a red edge. The numbers at the map represent the following municipalities: 1: municipality city Brotterode-Trusetal, 2: municipality Floh-Seligenthal, 3: municipality Breitungen/Werra, 4: municipality Fambach, 5: municipality Rotterode ...Show more... Map of Rural district Schmalkalden-Meiningen with the population per municipality.Municipality Frankenheim/Rhön is highlighted with a red edge. The numbers at the map represent the following municipalities: 1: municipality city Brotterode-Trusetal, 2: municipality Floh-Seligenthal, 3: municipality Breitungen/Werra, 4: municipality Fambach, 5: municipality Rotterode, 6: municipality Unterschönau, 7: municipality Rosa, 8: municipality city Schmalkalden, 9: municipality Oberschönau, 10: municipality city Oberhof, 11: municipality Altersbach, 12: municipality Roßdorf, 13: municipality city Steinbach-Hallenberg, 14: municipality Schwallungen, 15: municipality Bermbach, 16: municipality Hümpfershausen, 17: municipality city Zella-Mehlis, 18: municipality city Wasungen, 19: municipality Christes, 20: municipality Viernau, 21: municipality Friedelshausen, 22: municipality Metzels, 23: municipality Benshausen, 24: municipality Wahns, 25: municipality Mehmels, 26: municipality Oepfershausen, 27: municipality Wallbach, 28: municipality Schwarza, 29: municipality Kühndorf, 30: municipality Walldorf, 31: municipality Utendorf, 32: municipality Unterkatz, 33: municipality Unterweid, 34: municipality Kaltenwestheim, 35: municipality Rippershausen, 36: municipality Oberkatz, 37: municipality Aschenhausen, 38: municipality Stepfershausen, 39: municipality Kaltensundheim, 40: municipality Dillstädt, 41: municipality Oberweid, 42: municipality Rohr, 43: municipality city Meiningen, 44: municipality Erbenhausen, 45: municipality Melpers, 46: municipality Ellingshausen, 47: municipality Frankenheim/Rhön, 48: municipality Rhönblick, 49: municipality Belrieth, 50: municipality Obermaßfeld-Grimmenthal, 51: municipality Sülzfeld, 52: municipality Einhausen, 53: municipality Birx, 54: municipality Vachdorf, 55: municipality Untermaßfeld, 56: municipality Leutersdorf, 57: municipality Ritschenhausen, 58: municipality Neubrunn, 59: municipality Wölfershausen, 60: municipality Henneberg, 61: municipality Grabfeld ...Show less...

Population per age group
The percentage of inhabitants per age group in the municipality Frankenheim/Rhön

One moment please, your device is loading the charts...

Municipality Frankenheim/Rhön, 2019, age groups.

Population, age groups: percentage of inhabitants per age category.

The number of rooms per house (dwelling)
The number of rooms of the houses in the municipality Frankenheim/Rhön

One moment please, your device is loading the charts...

Municipality Frankenheim/Rhön, 2019, number of rooms per house.

The percentage shows the relative share of houses per category based on the numer of rooms: 1 to 2 rooms, 3 to 4 rooms or 5 rooms or more. This is based on the total number of rooms as identified for all dwellings in the municipality Frankenheim/Rhön.

Data about more than 100 topics!

The table below shows data for more than 100 topics as most recently available for the municipality Frankenheim/Rhön. Select a category to display the related topics:

BusinessValueUnitYear
Businesses1Number2017
Active persons0Number2017
Gross wages€0Euro2017
DwellingsValueUnitYear
Houses 1 room1Number2019
Houses 2 rooms14Number2019
Houses 3 rooms66Number2019
Houses 4 rooms113Number2019
Houses 5 rooms97Number2019
Houses 6 rooms113Number2019
Houses 7+ rooms 102Number2019
Houses 1-2 rooms15Number2019
Houses 3-4 rooms179Number2019
Houses 5+ rooms312Number2019
1-2 rooms3%Percentage2019
3-4 rooms35%Percentage2019
5+ rooms62%Percentage2019
ElectionsValueUnitYear
Voters Bundestag921,00Number2017
Voter turnout Bundestag53Number2017
Votes valid Bundestag482Number2017
Votes Bundestag CDU/CSU151Number2017
Votes Bundestag SPD85Number2017
Votes Bundestag GRÜNE7Number2017
Votes Bundestag FDP35Number2017
Votes Bundestag DIE LINKE67Number2017
Votes Bundestag AfD124Number2017
Votes Bundestag other parties13Number2017
Votes Bundestag total482Number2017
% Votes Bundestag CDU/CSU16%Percentage2017
% Votes Bundestag SPD9%Percentage2017
% Votes Bundestag GRÜNE1%Percentage2017
% Votes Bundestag FDP4%Percentage2017
% Votes Bundestag DIE LINKE7%Percentage2017
% Votes Bundestag AfD13%Percentage2017
% Votes Bundestag other parties1%Percentage2017
EmploymentValueUnitYear
Employees489Number2019
Employees male292Number2019
Employees female197Number2019
Employees foreigner0Number2019
Employees male foreigner0Number2019
Employees female foreigner0Number2019
Unemployed24Number2018
Unemployed foreigners0Number2018
Unemployed severely disabled3Number2018
Unemployed 15-200Number2018
Unemployed 15-250Number2018
Unemployed 55-656Number2018
Unemployed long-term11Number2018
% Unemployed2%Percentage2018
% Unemployed foreigners0%Percentage of the population2018
% Unemployed severely disabled0%Percentage of the population2018
% Unemployed 15-200%Percentage of the population2018
% Unemployed 15-250%Percentage of the population2018
% Unemployed 55-651%Percentage of the population2018
% Unemployed long-term1%Percentage of the population2018
IncomeValueUnitYear
Income receivers482Number2015
Income total€13.587Euro2015
Income tax€1.687Euro2015
PopulationValueUnitYear
Population1.085Number2019
Men554Number2019
Women531Number2019
% Men51%Percentage2019
% Women49%Percentage2019
0-18190Number2019
18-3096Number2019
30-45211Number2019
45-60274Number2019
18-60581Number2019
60-75220Number2019
60+314Number2019
Average age45Average number2019
Average age male44Average number2019
Average age female46Average number2019
Births14Number2018
Births male7Number2018
Births female7Number2018
1K Births13Number per 1000 inhabitants2018
Deaths14Number2018
Deaths male7Number2018
Deaths female7Number2018
1K Deaths13Number2018
0-328Number2019
Girls 0-315Number2019
Boys 0-313Number2019
3-637Number2019
Girls 3-620Number2019
Boys 3-617Number2019
6-1037Number2019
10-1555Number2019
15-1833Number2019
18-2015Number2019
20-2535Number2019
25-3046Number2019
30-3578Number2019
35-4074Number2019
40-4559Number2019
45-5087Number2019
50-5589Number2019
55-6098Number2019
60-6595Number2019
65-75125Number2019
Women 65-7066Number2019
Men 65-7059Number2019
75+94Number2019
Women 75+62Number2019
Men 75+32Number2019
% 0-109%Percentage2019
% 10-188%Percentage2019
% 18-309%Percentage2019
% 30-4519%Percentage2019
% 45-6025%Percentage2019
% 60+29%Percentage2019
Real estateValueUnitYear
Property tax A revenueno dataEurono data
Property tax B revenueno dataEurono data
Trade tax actual revenueno dataEurono data
Property tax A basic amountno dataEurono data
Property tax B basic amountno dataEurono data
Trade tax basic amountno dataEurono data
Property tax A rateno dataEurono data
Property tax B rateno dataEurono data
Trade tax rateno dataEurono data
Real tax raising forceno dataEurono data
Trade tax levyno dataEurono data
Trade tax netno dataEurono data
Community share in income taxno dataEurono data
Community share in sales taxno dataEurono data
Tax revenueno dataEurono data
RegionalValueUnitYear
Region code160665005024Code2019
Region code 8 digits16066024Code16066024
Sorting code160665005024Code160665005024
Sorting code 8 digits16066024Code16066024
Region nameFrankenheim/RhönName2019
Regional level6Categorical type2019
Region typeMunicipalityCategorical type2019
Region type detailmunicipalityCategorical type2019
Region name with typemunicipality Frankenheim/RhönName2019
Region name in GermanGemeinde Frankenheim/RhönName2019
Direct subregionsno dataNumber2019
NUTS codeDEG0BCode2019
Area9Area in km²2019
ReligionValueUnitYear
Roman Catholic church18Number2011
Protestant church565Number2011
Other or none602Number2011
% Roman Catholic church2%Percentage2011
% Protestant church48%Percentage2011
% Other or none51%Percentage2011
Roman Catholic church German18Number2011
Protestant church German565Number2011
Other or none German602Number2011
% Roman Catholic church German2%Percentage2011
% Protestant church German48%Percentage2011
% Other or none German Foreign51%Percentage2011
Roman Catholic church Foreign0Number2011
Protestant church Foreign0Number2011
Other or none Foreign0Number2011
% Roman Catholic church Foreignno dataPercentageno data
% Protestant church Foreignno dataPercentageno data
% Other or none Foreignno dataPercentageno data
Open data sources used

Data is used from multiple German open data providers. See this description of the sources with the definitions of all regional topics.

Sources & definitions
Under development
Work is in progress to add more information to this page

This page will be further expanded with more topics in clear graphs. This will be done in several iterations in the coming weeks.